eLearning Bundle - Statistics and Data Mining Online Course

Statistics TrainingeLearning Bundle - Statistics and Data Mining

by Certstaffix® Training

Length: 1 Course(s)      Price: $250/person (US Dollars)      Bulk Pricing: 6+ Contact Us      Access Length: 6 Months      Category: Business Statistics


If you wish to enter the world of statistics and data mining, then look no further because this practical video course will walk you through the basics as well as the advanced concepts in a step-by-step manner.
Purchase This Course ➥
Course Description: Print It | Download PDF | Email It

  Online Business Statistics Classes: Learn at Your Own Pace

We will enroll you into a demo (Windows 10) eLearning session. Login information will be emailed to you.

Prefer a self-paced learning solution to fit your own schedule? Certstaffix® Training offers eLearning courses bundled together:

  • Learn at your own pace - Start and stop as it is convenient for you. Pick up where you left off.
  • Lecture utilizing video and recorded screen shots
  • 6 month subscription length

  Detailed Training Topics

Course Description: Print It | Download PDF | Email It
Statistics Training

Course Overview - Course Length - 5:51 hours

Data science is an ever-evolving field, with an exponentially growing popularity. It includes techniques and theories based on the fields of statistics, computer science, and most importantly machine learning, databases, and visualization. If you wish to enter the world of statistics and data mining, then look no further because this practical video course will walk you through the basics as well as the advanced concepts in a step-by-step manner.

Packt’s Video Learning Path is a series of individual video products put together in a logical and stepwise manner such that each video builds on the skills learned in the video before it.

The highlights of this Learning Path are:

Learn when to use different statistical techniques, how to set up different analyses, and how to interpret the results
Apply statistical and data mining techniques to analyze and interpret results using CHAID, linear regression, and neural networks
This Learning Path begins with explaining the steps to analyse data and identify which summary statistics are relevant to the type of data you are summarizing. You will then learn several procedures, such as how to run and interpret frequencies and how to create various graphs. You will also be introduced to the idea of inferential statistics, probability, and hypothesis testing.

Next, you will learn how to perform and interpret the results of basic statistical analyses such as chi-square, independent and paired sample t-tests, one-way ANOVA, post-hoc tests, and bivariate correlations and graphical displays such as clustered bar charts, error bar charts, and scatter plots. You will then learn how to use different statistical techniques, set up different analyses, and interpret the results.

Moving ahead, this Learning Path shows the comparing and contrasting between statistics and data mining and then provides an overview of the various types of projects data scientists usually encounter. Next, you will be introduced to the three methods (statistical, decision tree, and machine learning) with which you can perform predictive modeling. Finally, you will explore segmentation modeling to learn the art of cluster analysis and will work with association modelling to perform market basket analysis.

By the end of this Learning Path, you will gain a firm knowledge on data analysis, data mining, and statistical analysis and be able to implement these powerful techniques on your data with ease.

Course Objectives

- Get familiar with the basics of analyzing data
- Exploring the importance of summarizing individual variables
- Use inferential statistics and know when to perform the Chi-Square test
- Get well-versed with correlations
- Differentiate between the various types of predictive models
- Master linear regression and explore the results of a decision tree
- Understand when to perform cluster analysis and work with neural networks
Course Description: Print It | Download PDF | Email It